 REPORT No. 78

THE LIMITING VELOCITY IN FALLING
- FROM A GREAT HEIGHT

v

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

e i GEipataes,

e

p %’ii_"l”ﬁl ,.Q .";':_.;'g:gu. s

N L iy

WASHINGTON
GOVERNMENT PRINTING OFFICE
1918

T



REPORT No. 78

THE LIMITING VELOCITY IN FALLING
FROM A GREAT HEIGHT

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

PREPRINT FROM FIFTH ANNUAL REPORT

WASHINGTON
GOVERNMENT PRINTING OFFICE
1519







REPORT No. 78

THE LIMITING VELOCITY IN FALLING FROM
A GREAT HEIGHT.

BY EDWIN BIDWELL WILSON

13— . C 3






. REPORT No. 78.

THE LIMITING VELOCITY IN FALLING FROM A GREAT HEIGHT.

By Epwin BIDWELL WILSON.

1. The fundamental characteristic of the vertical motion under gravity in a resisting
medium is the approach to a final or limiting velocity U, whether the initial downward velocity
is less or greater than U. "The equations of motion are easily set up and integrated when the
density of ths medium is constant "and the resistance varies as the square of the velocity.

A fact not so much stressed is the slowness of the approach to the limiting velocity U.
For example the simple relation »*=2¢h, which neglects altogether the resistance of the atmos-

phere, shows that the height 7 of release from rest must be about 10,000 fest before the object
will attain e velocity of as much as 800 ft./sec. even without the opposition of the air resistance;

and when allowance is made for that resistance the height must be greater. If, therefore,
terminal velocities of 900 or more feet per second, such as are customary with airplarie bombs,
are under consideration, it is only in" the case of fall from a great height (upward of 10,000
feet) that the terminal veloclty can be anywhere nearly approached.

Here, however, another difficulty enters. The resistance of the air varies with the density
of the medium and this variation should not be assumed & priori to be negligible in the case of

fall from heights of upward of 2 miles. In the standard table of densities at different levels,
the ratio p/p, of the density at altitude A to that at the earth has become about 0.74 at 10,000

feot, 0.62 at 15,000, and 0.44 at 25,000, The question thus arises as to whether the changing

resistance of the air may be taken into account in some satisfactorily simple way for the dis-
cussion of vertical fall. '

It is the purpose of this report to give that simple treatment of the problem which I have
in the past offered to my clagses af the Massachusetts Institute of Technology; there are
undoubtedly other solutions, perhaps equally simple or simpler, but I have seen none.

2. The equation of motion is

o

W%=— Wg+cgp2_§év’

wb.l\‘ftf
if W be the masy, v the velocity upward, and epv? be the resisting force in pounds. With the
_ i 2
substitution %= the equation reduces to %-—‘—%ﬂ ==2g and is linear, but with a variable

coefficient p. The general solution may be indicated in the form
2
. -%’fﬂd"=-—z_qfe ~F* e

In order to perform the integration it is necessary (unless graphical methods are used) to
have an expression for p as a function of A that is sufficiently accurate and at the same time of
such form as to make integrable the two expressions

fpdh a,ndfe"Wf"‘n dh+C

Some work will be saved if the first expression can ifself be represented by an empirical equa-~
tion directly without having first to determine-p and then integrate that result.
)
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3. Physically f bpdh is the amount of air between the earth and the height & in a column
of unit cross section. This amount can fortunately be read off immediately from a table of
barometric pressures p at different levels—in fact f pdh is simply p,— p,, the drop in pressure in
pounds per square foot.

If F (k) is the amount of air in inches of mercury, the followmg table gives the value of F
from h=0 to k=24,000 feet.

k=0 . 4,000 8000 12,000 . 16,000 20,000 24,000
— F=0 407 768 1085 = 13.62 .. 16.02  18.09

Now, as the exponential of F (multiplied by a constant) must he integrated, it is advisable

to have a logarithmic expression to give the empirical relation between % and F, Try:

F(R)y=blog, (1 +ah).

This holds for A=o0 and has two disposable constants ¢ and b. A least-squares solution could
be made to determine the best values for @ and &; but a sufficiently good result may be had
by passing the curve through or near two sets of va.lues in the table: .

F,=blog (1+ak,), F,=blog (1+ah,):
F:F,=log (1+ak): log (1 +a hy),14+a b,=(1+a k) IFa

Let h;=8,000. Then F,=7.68. Let F,=2F,=15.36. Then k, is ]ust. under 20,000 and
may be taken as A, =19,000 by mtelpolatlon Hence . _ L o

1+19,000 ¢ =11+ 8000 a)*=1 + 16,000 o+ 64,000,000 a*

@ =38/64,000. Whence b=24.1. _
F(h) =24.1 log, (1+3h/64,000)=55.5 log,, (1 +3%/64,000). ’ o
The values determined by this function F are

and

Thus

h=0 4,000 8,000 12,000 ~ 16,000 = 20,000 24,000
F=0 4.05 7.68 10.8 13.5 15.9 18.1

These check with the given values to less than I per cent, and therefore seem quite good
enough. -
4. 'The empirical formula just obtained must be transformed over to suitable units for
insertion in the integral of thé differential equation. Let U be the terminal or limiting velocity
of the projectile in air of the density p, at the earth’s surface. Then _

¢go, U= Wg or e= W/ U,
%951 f odh= —2-‘7 odh.
If the units be the pound and foot

f om0 62,5 5 Fi(h) = 1706 log, (1+34/64,000).

Taking ¢=82.17 and p, =.07608, the result is

—2 ~1,430,000
p.,tg o= /. (1+64 000,/

With an error of less than 1 per cent this may be written as

1200 8h \
B "‘”‘“( ) (“6‘4,000)'
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An error of 1 per cent seems quite within the range of accuracy possible in such work as this,
where the variation of atmospheric conditions from the so-celled standard table may at any
particular time be considerable.

The integral is therefore

(s 3h )—($)’ f(l 3% dh—(‘?—?)’ o
"”( tezoo0) @~ —29)\!ts5000 +6

where the only parameter remaining is the terminal velocity U in air of standard density.
If in particular a particle starts from rest at the altitude H,

o3 N fH L. 8h >-(l’;u°°)'dh
“*( +64,000) =) ( *+ 64,000 :

The integral may be evaluated readily, as the integrand is a simple negative power, but leads
to a complicated literal formula.
A simple case would be where U=1,200: Then

3H

142
3%\ 64,000 62,000
”’=29<1+64,000' 3 log, .ok
64,000

This is the only case in which a logarithm enters; the others are algebraic, e. g.; if U=600,

3h \* 64,000 3h \"? 3H \®
v =29<1 +$4,000) 3x3 ll:(l +54,000 —(1 +64,000) ]

5. The formulas thus obtained should not be applied to calculate velocities which are large
compared with that of sound. It is generally admitted that the simple square law of resistance
does not hold for velocities much in excess of 800 ft./sec. Just how well the Iaw holds below
that figure may still be considered doubtful; but two recent authorities (E. Vallier, Balistique
Exterieure, Encyclopedie des Sciences Mathematiques, tome IV, Vol. 6, fase. 1, p. 15, Gauthier—
Villars, Paris, 1913; and X Prescott, London, Phil. Mag., ser. 6, vol. xx, p. 332, Oct. 1917)

seem to feel tolerably certain of the law for compact shell-like bodies up to 800 ft./sec. It was

seen-at the start that irrespective of air resistance, such a veloeity would not be obtained from
rest in a fall of 10,000 feet. If U=1,200, the velocity of 800 ft./sec. will be reached at the earth’s
surface only when the fall is through some 15,000 feet. (Whether high velocities might not be
attained at intermediate levels is a question that should not be overlooked.) '

6. It is often stated, as is indeed obvious, that a body falling in a medium of increasing
density such as the air may reach & maximum velocity and be subsequently retarded before
striking the earth. The terminal velocity toward which the body strives is of course greater at
higher levels. The question of reaching s maximum velocity is therefore a question of balance
between the height of fall and the natural resistance of the body relative to its weight. A
body of high terminal velocity (in standard air) must fall from a very great height in order to
attain a maximum greater than the speed with which it reaches the earth, whereas a body of low
terminal velocity need not fall so far.

The maximum velocity of a body falling from rest is obtained by differentiating

o143 )(#)' o Oy
V= 9( 84,000 A ( +51, ooo’) '

The derivative of an integral with respect to the lower limif is the negative of the integi-and,
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Hence for the maximura of v, or of +*

_1+<1’Z2]O_0>’<1+ sk >(1%),_1 <1+64 000> ) <1+64 000) - . .

64, 000, (1 200\?

For a given H this equation will determine the level % where the maximum velocity is attained.
If in particular this maximum should be at A=0, the altitude H of fall must be

2
_64,000] /1,200\(F) " _1

For example, if U=600, H=12,500. The maximum velocity will be reached before striking
the earth only if H>12,500. If U=1,200, the bracket has the value ¢-1=1.73, and the. max-
imum value will not be attained unless the drop is from over 35,000 fest—levels to which the
empirical formulas used do not remain valid.

In any case of resisted fall in which a maximum of velocity is attained the value of that
maximum velocity must-be the value of the terminal velocity at that level, because the body
has been gaining velocity in the rarer air above and will be losing velocity in the denser air
below.

If, therefare, the velocity at k=0 is below the terminal velocity U, it may safely be
atsumed that the value for =0 has not been exceeded; but if the value for A=0 is larger
than U, there has been a still larger velocity at some point of the path. The caution paren-
thetically suggested at the end of the last article can therefore ba cbserved easily.

MassacHUSETTS INSTITUTE OF TECHENOLOGY, September 6, 1919,
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